Kecerdasan Buatan dalam Manajemen SDM: Peluang, Etika, dan Masa Depan
DOI:
https://doi.org/10.59012/jsb.v3i2.82Keywords:
Kecerdasan Buatan, Manajemen SDM, Peluang, Tantangan, Etika AI, Masa Depan Dunia Kerja, Transformasi Digital.Abstract
Artikel ini bertujuan untuk secara sistematis mengeksplorasi dampak transformatif Kecerdasan Buatan (AI) pada Manajemen Sumber Daya Manusia (MSDM) di era digital, secara khusus mengidentifikasi peluang utama, menganalisis tantangan signifikan, dan membahas implikasinya bagi masa depan dunia kerja. AI, sebagai kekuatan revolusioner, menghadirkan potensi besar untuk efisiensi dan inovasi, namun juga menimbulkan kompleksitas etika dan operasional yang mendalam. Dengan menggunakan pendekatan tinjauan literatur sistematis (meta-sintesis), studi ini mensintesis temuan dari artikel-artikel ilmiah yang ditinjau sejawat, baik nasional maupun internasional, yang diterbitkan antara tahun 2015 dan 2025. Tinjauan ini mengungkapkan bahwa AI secara signifikan meningkatkan efisiensi dan otomatisasi dalam proses SDM, memperbaiki pengambilan keputusan berbasis data, memungkinkan pengalaman karyawan yang dipersonalisasi, mempromosikan keragaman dan inklusi, serta meningkatkan produktivitas dan inovasi organisasi secara keseluruhan. Namun, tantangan utama meliputi bias algoritmik (misalnya, bias "mirip-saya" dan "stereotip"), masalah privasi dan keamanan data yang kritis, potensi penggantian pekerjaan, serta isu-isu terkait transparansi, akuntabilitas, dan keharusan pengawasan manusia. Studi ini berkontribusi pada literatur yang ada dengan memberikan pemahaman komprehensif dan terintegrasi tentang adopsi AI dalam MSDM sebagai proses yang kompleks dan multidimensional. Hal ini menekankan kebutuhan kritis akan kerangka kerja etika, desain yang berpusat pada manusia, dan adaptasi berkelanjutan untuk memastikan AI melengkapi upaya manusia dan mendorong masa depan dunia kerja yang berkelanjutan.
References
S. Banitaan, G. Al-refai, S. Almatarneh, and H. Alquran, “A Review on Artificial Intelligence in the Context of Industry 4.0,” Int. J. Adv. Comput. Sci. Appl., vol. 14, no. 2, 2023, doi: 10.14569/IJACSA.2023.0140204.
Q. Li, “Application and Challenges of Artificial Intelligence in Human Resource Management,” Front. Business, Econ. Manag., vol. 18, no. 3, pp. 29–34, Mar. 2025, doi: 10.54097/sq17e902.
M. Pedrami and S. K. Vaezi, “Factors influencing artificial intelligence adoption in human resource management: a meta-synthesis and systematic review of multidimensional considerations,” J. Work. Manag., vol. ahead-of-p, no. ahead-of-print, May 2025, doi: 10.1108/JWAM-10-2024-0158.
M. Soleimani, A. Intezari, J. Arrowsmith, D. J. Pauleen, and N. Taskin, “Reducing AI bias in recruitment and selection: an integrative grounded approach,” Int. J. Hum. Resour. Manag., pp. 1–36, Mar. 2025, doi: 10.1080/09585192.2025.2480617.
S. S. Ebrahim and H. A. Rajab, “The Future of HR: The Role of AI-Powered Recruitment in Shaping the Modern Workforce,” OALib, vol. 12, no. 01, pp. 1–22, Jan. 2025, doi: 10.4236/oalib.1112770.
B. Chuchu and J. Kyongo, “PERFORMANCE MANAGEMENT AND ARTIFICIAL INTELLIGENCE (AI): ENHANCING PERSONALIZED DEVELOPMENT WITH CONTINUOUS FEEDBACK AND DATA-DRIVEN DECISIONS,” Int. J. Comput. Sci. Inf. Technol. Educ., vol. Vol. 13, pp. 13–22, Mar. 2025, doi: 10.5281/zenodo.15025954.
B. Dash, A. Panda, S. Bhadange, and A. Singh, “Changing the Momentum from Men to Machine : An empirical Study of Role of AI ( Artificial Intelligence ) in Human Resource Operations,” Libr. Prog. Int., vol. 44, no. 3, pp. 20101–20108, 2024.
I. V. S. Ranganath, N. V. J. Rao, and A. Niharika, “An Analysis Of Artificial Intelligence For Employee Engagement And Productivity,” Libr. Prog. Int., vol. 44, no. 3, pp. 11439–11448, 2024.
E. A. Alzeiby, N. Islam, A. S. Shaik, and M. Z. Yaqub, “AI adoption in enterprises for enhanced strategic human resource management practices: benefiting the employee engagement and experience,” J. Enterp. Inf. Manag., vol. ahead-of-p, no. ahead-of-print, Apr. 2025, doi: 10.1108/JEIM-05-2024-0249.
P. Andrieux, R. D. Johnson, J. Sarabadani, and C. Van Slyke, “Ethical considerations of generative AI-enabled human resource management,” Organ. Dyn., vol. 53, no. 1, p. 101032, 2024.
P. Singh and K. Pushpanadham, “AI Ethics in Higher Education: Bridging the Gap Between Principles and Practices,” Gener. Artif. Intell. High. Educ. A Handb. Educ. Leaders, p. 64, 2024.
A. Nguyen, H. N. Ngo, Y. Hong, B. Dang, and B.-P. T. Nguyen, “Ethical principles for artificial intelligence in education,” Educ. Inf. Technol., vol. 28, no. 4, pp. 4221–4241, 2023.
K. Mariani and F. Vega Lozada, “The Use of AI and Algorithms for Decision-making in Workplace Recruitment Practices,” J. Student Res., 2023, doi: 10.47611/jsr.v12i1.1855.
R. G. Arora and N. K. Siradhana, “HR Transformation Through Artificial Intelligence,” Int. J. Inf. Syst. Soc. Chang., vol. 13, no. 1, pp. 1–16, Sep. 2022, doi: 10.4018/IJISSC.309736.
D. O.S. Agustono, R. Nugroho, and A. Yanu Alif Fianto, “Artificial Intelligence in Human Resource Management Practices,” KnE Soc. Sci., 2023, doi: 10.18502/kss.v8i9.13409.
S. Ahmed Alghamdi, “The Impact of HR Strategy on Organizational Effectiveness,” Am. J. Theor. Appl. Bus., 2020, doi: 10.11648/j.ajtab.20200604.16.
G. Kaur and R. Kaur, “A Critical Review on Analysis of Human Resource Functions Using AI Technologies,” in AIP Conference Proceedings, 2022. doi: 10.1063/5.0108980.
N. Mangal, “Using Analytics to Manage Employee Behavioural Traits and Predict Employee Performance,” in Analytics Enabled Decision Making, 2023. doi: 10.1007/978-981-19-9658-0_9.
K. Feng, H. Hong, K. Tang, and J. Wang, “Statistical Tests for Replacing Human Decision Makers with Algorithms,” SSRN Electron. J., 2020, doi: 10.2139/ssrn.3508224.
L. Abuladze and L. Hasimi, “The Effects of Artificial Intelligence in the Process of Recruiting Candidates,” in Lecture Notes in Business Information Processing, 2023. doi: 10.1007/978-3-031-30694-5_34.
S. W. , Et. al., “How Artificial Intelligence Transforms the Experience of Employees,” Turkish J. Comput. Math. Educ., 2021, doi: 10.17762/turcomat.v12i10.5603.
L. Tubino and C. Adachi, “Developing feedback literacy capabilities through an AI automated feedback tool,” ASCILITE Publ., p. e22039, Nov. 2022, doi: 10.14742/apubs.2022.39.
A. Malik, M. T. T. De Silva, P. Budhwar, and N. R. Srikanth, “Elevating talents’ experience through innovative artificial intelligence-mediated knowledge sharing: Evidence from an IT-multinational enterprise,” J. Int. Manag., 2021, doi: 10.1016/j.intman.2021.100871.
T. R. Weekes and T. C. Eskridge, “Responsible Human-Centered Artificial Intelligence for the Cognitive Enhancement of Knowledge Workers,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022. doi: 10.1007/978-3-031-21707-4_41.
U. Wilkens, “Artificial intelligence in the workplace – A double-edged sword,” International Journal of Information and Learning Technology. 2020. doi: 10.1108/IJILT-02-2020-0022.
E. Drage and K. Mackereth, “Does AI De-Bias Recruitment?,” 2022. doi: 10.1145/3514094.3534151.
D. Shin and E. Y. Shin, “Data’s Impact on Algorithmic Bias,” Computer (Long. Beach. Calif)., 2023, doi: 10.1109/MC.2023.3262909.
T. Timan, C. van Oirsouw, and M. Hoekstra, “The role of data regulation in shaping AI: An overview of challenges and recommendations for SMES,” in The Elements of Big Data Value: Foundations of the Research and Innovation Ecosystem, 2021. doi: 10.1007/978-3-030-68176-0_15.
D. Clifford, M. Richardson, and N. Witzleb, “Artificial intelligence and sensitive inferences: new challenges for data protection laws,” in Regulatory Insights on Artificial Intelligence, Edward Elgar Publishing, 2022, pp. 19–45.
M. Hickok and N. Maslej, “A policy primer and roadmap on AI worker surveillance and productivity scoring tools,” AI Ethics, 2023, doi: 10.1007/s43681-023-00275-8.
K. Roemmich, F. Schaub, and N. Andalibi, “Emotion AI at Work: Implications for Workplace Surveillance, Emotional Labor, and Emotional Privacy,” in Conference on Human Factors in Computing Systems - Proceedings, 2023. doi: 10.1145/3544548.3580950.
R. Tailor, S. Jain, and A. Kamble, “A Review paper on the Impact of Artificial Intelligence on the Job Market,” Int. J. Adv. Res. Sci. Commun. Technol., 2023, doi: 10.48175/ijarsct-10724.
S. Morandini, F. Fraboni, M. De Angelis, G. Puzzo, D. Giusino, and L. Pietrantoni, “THE IMPACT OF ARTIFICIAL INTELLIGENCE ON WORKERS’ SKILLS: UPSKILLING AND RESKILLING IN ORGANISATIONS,” Informing Sci., 2023, doi: 10.28945/5078.
V. Franzoni, “From Black Box to Glass Box: Advancing Transparency in Artificial Intelligence Systems for Ethical and Trustworthy AI,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023. doi: 10.1007/978-3-031-37114-1_9.
T. Schmude, L. Koesten, T. Möller, and S. Tschiatschek, “On the Impact of Explanations on Understanding of Algorithmic Decision-Making,” in ACM International Conference Proceeding Series, 2023. doi: 10.1145/3593013.3594054.
R. Panwar, “AI-ENABLED INTERVIEW ANALYSIS: UNVEILING INSIGHTS AND ENHANCING DECISION-MAKING IN HUMAN RESOURCE MANAGEMENT,” INTERANTIONAL J. Sci. Res. Eng. Manag., 2023, doi: 10.55041/ijsrem24357.
H. Park, D. Ahn, K. Hosanagar, and J. Lee, “Human-ai interaction in human resource management: Understanding why employees resist algorithmic evaluation at workplaces and how to mitigate burdens,” in Conference on Human Factors in Computing Systems - Proceedings, 2021. doi: 10.1145/3411764.3445304.
Q. V. Liao and S. S. Sundar, “Designing for Responsible Trust in AI Systems: A Communication Perspective,” in 2022 ACM Conference on Fairness Accountability and Transparency, New York, NY, USA: ACM, Jun. 2022, pp. 1257–1268. doi: 10.1145/3531146.3533182.
P. J. Denning and J. Arquilla, “The context problem in artificial intelligence,” Commun. ACM, 2022, doi: 10.1145/3567605.
C. Kidd and A. Birhane, “How AI can distort human beliefs,” Science (80-. )., 2023, doi: 10.1126/science.adi0248.
K. Ali, M. Alzaidi, D. Al-Fraihat, and A. M. Elamir, “Artificial Intelligence: Benefits, Application, Ethical Issues, and Organizational Responses,” in Lecture Notes in Networks and Systems, 2023. doi: 10.1007/978-981-19-7660-5_62.
H. H. H. Aldboush and M. Ferdous, “Building Trust in Fintech: An Analysis of Ethical and Privacy Considerations in the Intersection of Big Data, AI, and Customer Trust,” Int. J. Financ. Stud., 2023, doi: 10.3390/ijfs11030090.
A. H. Fomude, C. Yang, G. K. Agordzo, A. V. Serwah, and L. Abangbila, “AI Model to Improve HR Decision-Making with Machine Learning Predictions Algorithm,” in International Conference on Advanced Communication Technology, ICACT, 2023. doi: 10.23919/ICACT56868.2023.10079282.
A. Alsaif and M. Sabih Aksoy, “AI-HRM: Artificial Intelligence in Human Resource Management: A Literature Review,” J. Comput. Commun., 2023, doi: 10.21608/jocc.2023.307053.
P. Budhwar, A. Malik, M. T. T. De Silva, and P. Thevisuthan, “Artificial intelligence–challenges and opportunities for international HRM: a review and research agenda,” International Journal of Human Resource Management. 2022. doi: 10.1080/09585192.2022.2035161.
R. Kapoor and I. Ghosal, “Will Artificial Intelligence Compliment or Supplement Human Workforce in Organizations? A Shift to a Collaborative Human – Machine Environment,” Int. J. Recent Trends Bus. Tour., 2022, doi: 10.31674/ijrtbt.2022.v06i04.002.
A. Peng, B. Nushi, E. Kiciman, K. Inkpen, and E. Kamar, “Investigations of Performance and Bias in Human-AI Teamwork in Hiring,” in Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, 2022. doi: 10.1609/aaai.v36i11.21468.
J. Jakubik, D. Weber, P. Hemmer, M. Vössing, and G. Satzger, “Improving the efficiency of human-in-the-loop systems: adding artificial to human experts,” in International Conference on Wirtschaftsinformatik, Springer, 2023, pp. 131–147.
V. S. Barletta, D. Caivano, D. Gigante, and A. Ragone, “A Rapid Review of Responsible AI frameworks: How to guide the development of ethical AI,” ACM Int. Conf. Proceeding Ser., Jun. 2023, doi: 10.1145/3593434.3593478.
S. Srivastava and K. Sinha, “From Bias to Fairness: A Review of Ethical Considerations and Mitigation Strategies in Artificial Intelligence,” Int. J. Res. Appl. Sci. Eng. Technol., 2023, doi: 10.22214/ijraset.2023.49990.
D. F. Engstrom and A. Haim, “Regulating Government AI and the Challenge of Sociotechnical Design,” Annual Review of Law and Social Science. 2023. doi: 10.1146/annurev-lawsocsci-120522-091626.
N. Rischmeyer, “Machine Learning as Key Technology of AI: Automated Workforce Planning,” 2021. doi: 10.1007/978-3-030-65896-0_21.
A. Faqihi and S. J. Miah, “Designing an AI-Driven Talent Intelligence Solution: Exploring Big Data to Extend the TOE Framework,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2023, pp. 69–82. doi: 10.1007/978-981-99-2233-8_5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Society Bridge

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
License
Journal of Society Bridge is licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license. You are free to:
- Share — copy and redistribute the material in any medium or format
- Adapt — remix, transform, and build upon the material for any purpose, even commercially. This license is acceptable for Free Cultural Works.
The licensor cannot revoke these freedoms as long as you follow the license terms.
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
Copyright
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under an Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).